Электрический ток представляет собой направленное (упорядоченное) движение заряженных частиц. По способности веществ проводить электрический ток их разделяют на проводники и диэлектрики. Деление это условно, поскольку большинство веществ являются полупроводниками: одни не настолько хорошо проводят электрический ток, чтобы их отнести к проводникам, другие — не настолько плохо, чтобы назвать их диэлектриками.
Проводники электрического тока делят на две группы: металлы, проводимость которых обусловлена движением свободных электронов, и электролиты, где носителями заряда являются ионы.
Живые ткани представляют собой электролиты-проводники и диэлектрики. Наибольшей электропроводностью обладают плазма крови, спинномозговая жидкость. Несколько меньшей — цельная кровь, мышцы, паренхиматозные органы. Большое сопротивление электрическому току создают кости, жировая ткань, фасции, сухожилия и другие соединительнотканные образования. К диэлектрикам приближаются сухая кожа, волосы, ногти.
Гальванизация — лечебное воздействие постоянным непрерывным электрическим (гальваническим) током низкого напряжения (60–80 в) и малой силы (до 50 мА). Гальванический ток проникает в ткани через устья сальных и потовых желез, волосяные фолликулы, межклеточные щели и пространства. При длительном воздействии проникновение его в ткани происходит через всю кожу. При некоторых лечебных методиках электрический ток подводят к тканям через слизистые оболочки, поверхность ран. Вглубь тканей электрический ток направляется в основном по кровеносным и лимфатическим сосудам, «петляя» по тканям.
При включении электрической цепи сразу же начинается направленное перемещение ионов в соответствии с их полярностью. Отрицательно заряженные ионы (анионы) концентрируются у положительного электрода (анода), положительно заряженные (катионы) — у отрицательного электрода (катода). При соприкосновении с электродами катионы получают недостающие электроны, а анионы отдают лишние электроны. В результате этого на электродах происходит процесс выделения веществ — электролиз. При этом на электродах выделяется настолько значимое количество щелочи и кислоты, что для устранения их прижигающего действия применяют матерчатые прокладки толщиной не менее 1 см.
На пути ионов при движении к электродам внутри тканей встречаются клеточные мембраны, обладающие значительным сопротивлением электрическому току. Ионы скапливаются около мембран, образуя поляризационные зоны и поля внутри тканей. Поляризационный потенциал, измеренный электронным вольтметром, достигает максимальной величины (200–500 мВ) через 25–30 минут от начала воздействия. При выключении электрического тока он понижается по гиперболе, теряясь в физиологических колебаниях тканевого потенциала через 3–5 часов.
Выравнивание концентрации ионов в тканях после выключения электрического тока происходит за счет процессов диффузии — перемещения ионов из места их большей концентрации к месту меньшей концентрации. В этом выравнивании имеют значение и процессы осмоса — проникновение растворителя (в данном случае воды) через мембраны из места меньшей концентрации ионов в место их большей концентрации. Следовательно, процессы диффузии и осмоса, имеющие место в живых тканях и в физиологических условиях, под действием постоянного электрического тока интенсифицируются. Проницаемость окружающих мембран, определяющая интенсивность этих процессов, увеличивается.
Основные физиологические реакции и лечебное действие
Представление о физиологических реакциях, возникающих под влиянием постоянного электрического тока, основаны на ионной теории возбуждения, в разработку которой большой вклад внес академик П.П. Лазарев. Согласно этой теории для процессов возбуждения имеет значение количественное соотношение между одновалентными ионами — калием и натрием, и двухвалентными — кальцием и магнием. Подвижность ионов в значительной мере зависит от величины их гидратной оболочки — присоединенных к ионам дипольных молекул воды. Двухвалентные ионы, имеющие более мощную гидратную оболочку по сравнению с одновалентными, передвигаются медленнее. Поскольку все перечисленные ионы заряжены положительно, они передвигаются от анода к катоду. Через некоторое время под катодом будет наблюдаться относительное преобладание концентрации более подвижных ионов калия и натрия, «обогнавши» менее подвижные ионы кальция и магния. Под анодом, наоборот, будет преобладать концентрация менее подвижных ионов кальция и магния.
Концентрация указанных ионов и их соотношение имеют большое значение для процессов возбуждения. Изменение возбудимости тканей под действием электрического тока называют электротоном. В момент замыкания электрической цепи под катодом увеличивается возбудимость ткани, увеличивается проницаемость мембран и уменьшается их электрическое сопротивление. Это изменение возбудимости под катодом называют катэлектротоном. Под анодом возбудимость ткани снижается, клеточные мембраны уплотняются, и увеличивается их электрическое сопротивление. Эти изменения называются анэлектротоном. Через некоторое время в процессе продолжающегося воздействия постоянным электрическим током возбудимость под обоими полюсами возвращается к исходным величинам. При лечебном применении постоянного электрического тока учитывают особенности изменений возбудимости под катодом и под катодом. Если целью воздействия является снижение возбудимости ткани, на этот участок воздействуют анодом. Для повышения возбудимости ткани воздействуют катодом.
Постоянный электрический ток подводят к тканям с помощью электродов, накладываемых на кожу. Значительная величина сопротивления кожи приводит к тому, что почти все напряжение, подводимое к электродам, приходится на кожу. На этом участке кожи появляется ощущение ползания мурашек, легкое жжение, что связано с раздражением чувствительных нервных окончаний. Под электродами появляется гиперемия кожи, отек с набуханием всех ее слоев. Эти изменения ни в коей мере не связаны с тепловым воздействием. В методе гальванизации используется электрический ток столь малой силы, что практически значимого количества тепла в межэлектродном пространстве не выделяется. Механизм образования гиперемии нервно-рефлекторный. Раздражение чувствительных нервных окончаний вызывает рефлекторные реакции, имеющие местный сегментарный характер. Следствием их является расширение сосудов. Степень выраженности ответной реакции зависит от насыщенности данного участка кожи рецепторами. С соответствующих кожных зон можно воздействовать на внутренние органы через вегетативные нервные волокна и спинальные центры, вызывая в них рефлекторным путем такие же изменения, как и в коже: увеличение проницаемости мембран, интенсификацию диффузии и осмоса. Интенсивность обменных процессов в зоне воздействия увеличивается.
Постоянным электрическим током можно воздействовать и на центральную нервную систему. В головном и спинном мозге имеется функциональная полярность нисходящего направления: вышележащие центры заряжены положительно, нижележащие — отрицательно. Это состояние, называемое физиологическим анэлектротоном, обеспечивает нормальное функционирование центральной нервной системы. Его можно усилить с помощью постоянного электрического тока, соответственно располагая электроды. Например, положительный электрод в области лба, отрицательный — в межлопаточном пространстве. Такое воздействие способствует улучшению координирующей и регулирующей функций головного мозга, что может быть полезно при кортико-висцеральных заболеваниях.
В результате воздействия постоянным электрическим током наблюдается стимуляция системы фагоцитирующих макрофагов (клетки РЭС), что повышает эффективность защитных реакций.
Основные показания к применению
- Воспалительные процессы (без нагноения) в стадии разрешения.
- Заболевания и травмы периферической нервной системы.
- Дегенеративно-дистрофические заболевания опорно-двигательного аппарата.
- Дискинезии внутренних органов.
- Кортико-висцеральные заболевания.
- Функциональные расстройства центральной нервной системы.
Основные противопоказания к применению
- Острые стадии воспалительного процесса, гнойное воспаление.
- Нарушения целостности кожных покровов (царапины, ссадины).
- Острая и подострая экзема, другие дерматиты в области наложения электродов.
- Наличие признаков раздражения кожи после предыдущей процедуры.
- Острейший болевой синдром, вызванный повреждением периферических нервных стволов.